PHILADELPHIA – For years controversy has surrounded whether electronic medical records (EMR) would lead to increased patient safety, cut medical errors, and reduce healthcare costs. Now, researchers at the University of Pennsylvania School of Medicine have discovered a way to get another bonus from the implementation of electronic medical records: testing the efficacy of treatments for disease.
In the first study of its kind, Richard Tannen, M.D., Professor of Medicine at the University of Pennsylvania School of Medicine, led a team of researchers to find out if patient data, as captured by EMR databases, could be used to obtain vital information as effectively as randomized clinical trials, when evaluating drug therapies. The study appeared online last week in the British Medical Journal.
“Our findings show that if you do studies using EMR databases and you conduct analyses using new biostatistical methods we developed, we get results that are valid,” Tannen says. “That’s the real message of our paper — this can work.”
In January 2009, President Barack Obama unveiled plans to implement electronic medical records nationwide within five years, arguing that such a plan was crucial in the fight against rising health care costs. Of the nearly $900 billion in Obama’s planned stimulus package currently before the United States Senate, $20 billion is proposed for electronic health records.
Tannen says he and his group recognized that the large EMR databases containing compiled medical information could potentially give researchers the ability to study groups reflective of the total population, not just those who participate in clinical trials, and circumvent studies too costly or unethical for clinical trials. However, such databases contain observational information, which critics argue do not offer the same level of control as randomized trials.
“Our study cautiously, yet strongly, suggests that enormous amounts of information within electronic medical records can be used to expand evidence of how we should or shouldn’t manage healthcare,” Tannen says.
To address criticisms of observational studies, Tannen’s group had to first determine a way to use EMR databases for insights on therapy efficacy and then prove the results they found were valid.
Beginning six years ago, Tannen’s team selected six previously performed randomized trials with 17 measured outcomes and compared them to study data from an electronic database -- the UK general practice research database (GPRD), which included the medical records of roughly 8 million patients. Treatment efficacy was determined by the prevalence of cardiovascular outcomes, such as stroke, heart attack and death.
After using standard biostatistical methods to adjust for differences in the treated and untreated groups in the analysis of the database information, Tannen found that there were no differences in the database outcomes compared to randomized clinical trials in nine out of 17 outcomes.
In the other eight outcomes, Tannen’s group used an additional new biostatistical approach they discovered that controlled for differences between the treated and untreated groups prior to the time the study began. By using the new biostatistical method instead of the standard approach, the researchers showed there were no differences between the outcomes in the EMR database study compared to the randomized clinical trials.
Though Tannen warns the ability to use EMR databases from the United States to measure the efficacy of therapies will take more than 10 years of national data, he says the results of his study should serve as a catalyst for more researchers to explore the accuracy of the information that can be obtained using EMR database studies.
“An appropriately configured EMR database could offer an invaluable tool, but we need to get to work now on how to configure it properly,” Tannen says. “If we don’t worry about this issue right now and promote a higher investment in the area of EMR research, we’ll lose an opportunity, an enormous health opportunity.”
Mark Wiener and Dawei Xie from Penn are co-authors on this study. This research was funded by a grant from the National Institutes of Health.
###
PENN Medicine is a $3.6 billion enterprise dedicated to the related missions of medical education, biomedical research, and excellence in patient care. PENN Medicine consists of the University of Pennsylvania School of Medicine (founded in 1765 as the nation's first medical school) and the University of Pennsylvania Health System.
Penn's School of Medicine is currently ranked #4 in the nation in U.S.News & World Report's survey of top research-oriented medical schools; and, according to most recent data from the National Institutes of Health, received over $379 million in NIH research funds in the 2006 fiscal year. Supporting 1,700 fulltime faculty and 700 students, the School of Medicine is recognized worldwide for its superior education and training of the next generation of physician-scientists and leaders of academic medicine.
The University of Pennsylvania Health System (UPHS) includes its flagship hospital, the Hospital of the University of Pennsylvania, rated one of the nation’s top ten “Honor Roll” hospitals by U.S.News & World Report; Pennsylvania Hospital, the nation's first hospital; and Penn Presbyterian Medical Center. In addition UPHS includes a primary-care provider network; a faculty practice plan; home care, hospice, and nursing home; three multispecialty satellite facilities; as well as the Penn Medicine Rittenhouse campus, which offers comprehensive inpatient rehabilitation facilities and outpatient services in multiple specialties.
Penn Medicine is one of the world’s leading academic medical centers, dedicated to the related missions of medical education, biomedical research, excellence in patient care, and community service. The organization consists of the University of Pennsylvania Health System and Penn’s Raymond and Ruth Perelman School of Medicine, founded in 1765 as the nation’s first medical school.
The Perelman School of Medicine is consistently among the nation's top recipients of funding from the National Institutes of Health, with $550 million awarded in the 2022 fiscal year. Home to a proud history of “firsts” in medicine, Penn Medicine teams have pioneered discoveries and innovations that have shaped modern medicine, including recent breakthroughs such as CAR T cell therapy for cancer and the mRNA technology used in COVID-19 vaccines.
The University of Pennsylvania Health System’s patient care facilities stretch from the Susquehanna River in Pennsylvania to the New Jersey shore. These include the Hospital of the University of Pennsylvania, Penn Presbyterian Medical Center, Chester County Hospital, Lancaster General Health, Penn Medicine Princeton Health, and Pennsylvania Hospital—the nation’s first hospital, founded in 1751. Additional facilities and enterprises include Good Shepherd Penn Partners, Penn Medicine at Home, Lancaster Behavioral Health Hospital, and Princeton House Behavioral Health, among others.
Penn Medicine is an $11.1 billion enterprise powered by more than 49,000 talented faculty and staff.