PHILADELPHIA - After a vaccination or an infection, the human immune system remembers to keep protecting against invaders it has already encountered, with the aid of specialized B-cells and T-cells. Immunological memory has long been the subject of intense study, but the underlying cellular mechanisms regulating the generation and persistence of long-lived memory T cells remain largely undefined. Now, University of Pennsylvania School of Medicine researchers have found that a common anti-diabetic drug might enhance the effectiveness of vaccines. The findings are described this week in an advanced online publication of Nature.

Erika Pearce, PhD and Gretchen Harms look at T-cells on a computer screen

Co-authors Erika Pearce, PhD and Gretchen Harms (Click to view full-size image)

In this study, an experimental preventive vaccine was made more efficacious by boosting numbers of cancer fighting T cells with the anti-diabetic drug metformin. This resulted in a larger population of memory immune cells that were able to fight off a tumor at a later time.

“We serendipitously discovered that the metabolizing, or burning, of fatty acids by T cells following the peak of infection is critical to establishing memory in those T cells,” says senior author Yongwon Choi, PhD, Professor of Pathology and Laboratory Medicine. “As a consequence, we used the widely prescribed anti-diabetic drug metformin, which is known to operate on fatty-acid metabolism, to enhance this process.”

“We have shown experimentally in mice that metformin increases T-cell memory as well as the ensuing protective immunity of an experimental anti-cancer vaccine,” notes postdoctoral fellow and first author Erika Pearce, PhD.

“These findings were unanticipated, but are potentially extremely important and could revolutionize current strategies for both therapeutic and prophylactic vaccines,” says Choi.

The lab developed mice deficient in TRAF6, a protein important in the immune response. They found that CD8 T cells deficient in TRAF6 mount an initial response, meaning they are able to proliferate into an army of so-called effector cells that can clear infection.  However, TRAF6-deficient CD8 T cells do not develop into a population of memory cells that can recall a particular infectious agent when the body encounters it a second time. 

Using microarray analysis and a program that searches protein pathways, the team compared the gene expression profiles of TRAF6-deficient cells and cells with TRAF6 to see what stood out. “We discovered differences in genes that regulate fatty acid metabolism,” says Pearce.  Fatty acids can be broken down for energy and the microarray analyses revealed that TRAF6-deficient CD8 T cells exhibit altered expression of genes that regulate this process.

Consistent with the microarray findings, CD8 T cells lacking TRAF6 display defective fatty acid oxidation in response to growth factor withdrawal. Giving the mutant mice the metformin restored fatty acid oxidation and the generation of memory cells that lack TRAF6.  Remarkably, this treatment also increased the generation of memory cells in normal mice, and consequently was able to significantly improve the efficacy of an experimental anti-cancer vaccine. A lack of fatty acid metabolism is correlated with lack of T-cell memory and through in vitro studies the team also saw that T cells burn more fatty acids when given metformin.

T cells proliferating to form an army of effector cells burn glucose for their energy. Non-proliferating T cells, such as memory cells, burn fatty acids, amino acids, and glucose interchangeably in a different metabolic pathway. From this, explains Pearce, “it is implied that there’s a switch in metabolism somewhere along the way between proliferating and non-proliferating T cell populations.” Perhaps at the peak of the proliferation, when energy is limiting and cells are metabolically stressed, there is a switch to another energy pathway to survive, say from glucose to fatty acids. 

“Most T cell vaccines have a good initial response, but the development of long-term T memory cells has been difficult to achieve,” says Choi. “The key improvement we’re hoping to contribute is to use the traditional vaccine, then with the proper timing, we can use metformin, in theory, to boost the development of memory cells. We want to enhance immunity after an initial vaccination so we can make vaccines that are being tested now better.”

This work was funded in part by grants from the National Cancer Institute and the Canadian Institutes of Health Research. Co-authors in addition to Choi and Pearce are Matthew C. Walsh, Pedro J. Cejas, Gretchen M. Harms, Hao Shen, and Li-San Wang, all from Penn as well as Russell G. Jones from McGill University, Montreal.

###

PENN Medicine is a $3.6 billion enterprise dedicated to the related missions of medical education, biomedical research, and excellence in patient care. PENN Medicine consists of the University of Pennsylvania School of Medicine (founded in 1765 as the nation's first medical school) and the University of Pennsylvania Health System.

Penn's School of Medicine is currently ranked #3 in the nation in U.S.News & World Report's survey of top research-oriented medical schools; and, according to the National Institutes of Health, received over $366 million in NIH grants (excluding contracts) in the 2008 fiscal year. Supporting 1,700 fulltime faculty and 700 students, the School of Medicine is recognized worldwide for its superior education and training of the next generation of physician-scientists and leaders of academic medicine.

The University of Pennsylvania Health System (UPHS) includes its flagship hospital, the Hospital of the University of Pennsylvania, rated one of the nation’s top ten “Honor Roll” hospitals by U.S.News & World Report; Pennsylvania Hospital, the nation's first hospital; and Penn Presbyterian Medical Center, named one of the nation’s “100 Top Hospitals” for cardiovascular care by Thomson Reuters. In addition UPHS includes a primary-care provider network; a faculty practice plan; home care, hospice, and nursing home; three multispecialty satellite facilities; as well as the Penn Medicine Rittenhouse campus, which offers comprehensive inpatient rehabilitation facilities and outpatient services in multiple specialties.

Penn Medicine is one of the world’s leading academic medical centers, dedicated to the related missions of medical education, biomedical research, excellence in patient care, and community service. The organization consists of the University of Pennsylvania Health System and Penn’s Raymond and Ruth Perelman School of Medicine, founded in 1765 as the nation’s first medical school.

The Perelman School of Medicine is consistently among the nation's top recipients of funding from the National Institutes of Health, with $550 million awarded in the 2022 fiscal year. Home to a proud history of “firsts” in medicine, Penn Medicine teams have pioneered discoveries and innovations that have shaped modern medicine, including recent breakthroughs such as CAR T cell therapy for cancer and the mRNA technology used in COVID-19 vaccines.

The University of Pennsylvania Health System’s patient care facilities stretch from the Susquehanna River in Pennsylvania to the New Jersey shore. These include the Hospital of the University of Pennsylvania, Penn Presbyterian Medical Center, Chester County Hospital, Lancaster General Health, Penn Medicine Princeton Health, and Pennsylvania Hospital—the nation’s first hospital, founded in 1751. Additional facilities and enterprises include Good Shepherd Penn Partners, Penn Medicine at Home, Lancaster Behavioral Health Hospital, and Princeton House Behavioral Health, among others.

Penn Medicine is an $11.1 billion enterprise powered by more than 49,000 talented faculty and staff.

Share This Page: