PHILADELPHIA - While studying how the heart is formed, scientists at the University of Pennsylvania School of Medicine serendipitously found a novel cellular source of atrial fibrillation (AF), the most common type of abnormal heart beat. Jonathan Epstein, MD, William Wikoff Smith Professor, and Chair, Department of Cell and Developmental Biology, and Vickas Patel,   MD, PhD, Assistant Professor of Medicine,  have identified a population of cells in the atria of the heart and pulmonary veins of humans and mice that appear to be the seat of AF. The finding may lead to a more precise way to treat AF, with reduced side effects. Their findings appear online in the Journal of Clinical Investigation.

This group of cells expresses the protein DCT, which is also involved in making the skin pigment melanin and in the detoxification of free radicals. The researchers also showed that the DCT-expressing cells in the mouse heart were a distinct cell type from heart-muscle cells and pigment-producing cells, although they conduct electrical currents important for coordinated contraction of the heart. The location of these cells in the pulmonary veins suggested their possible role in AF because AF can arise in these blood vessels.  Atrial fibrillation is a very common and debilitating disease that greatly affects quality of life.

Know ing the location of these cells may help develop better treatments for AF. "We already target the pulmonary veins for radiofrequency ablation, a nonsurgical procedure using radiofrequency energy similar to microwaves, to treat some types of rapid heart beating as a relatively new treatment, and sometimes cure, for AF," notes Epstein.

"For the most part, current drug therapy for atrial fibrillation has been disappointingly ineffective and drug therapy is often associated with burdensome side-effects," notes Patel."

"If these cells are truly the source of AF in some patients, and we can figure out a way to identify them, then our ablation can be far more precise and targeted, thus limiting potential side effects, making the procedure potentially more simple and rapid, and hence more cost effective," explains Epstein.

But the investigators caution more research is needed to get to the point where these ideas can be validated in patients. "The findings hold out promise for a more precise cellular target for treating this common disorder," adds Epstein.

This research was funded by grants from the NIH, the Cotswold Foundation, the WW Smith Endowed Professorship, the W.W. Smith Chartiable Trust, and the Gunther Fund for Cardiovascular Research.

Penn Medicine is one of the world’s leading academic medical centers, dedicated to the related missions of medical education, biomedical research, excellence in patient care, and community service. The organization consists of the University of Pennsylvania Health System and Penn’s Raymond and Ruth Perelman School of Medicine, founded in 1765 as the nation’s first medical school.

The Perelman School of Medicine is consistently among the nation's top recipients of funding from the National Institutes of Health, with $550 million awarded in the 2022 fiscal year. Home to a proud history of “firsts” in medicine, Penn Medicine teams have pioneered discoveries and innovations that have shaped modern medicine, including recent breakthroughs such as CAR T cell therapy for cancer and the mRNA technology used in COVID-19 vaccines.

The University of Pennsylvania Health System’s patient care facilities stretch from the Susquehanna River in Pennsylvania to the New Jersey shore. These include the Hospital of the University of Pennsylvania, Penn Presbyterian Medical Center, Chester County Hospital, Lancaster General Health, Penn Medicine Princeton Health, and Pennsylvania Hospital—the nation’s first hospital, founded in 1751. Additional facilities and enterprises include Good Shepherd Penn Partners, Penn Medicine at Home, Lancaster Behavioral Health Hospital, and Princeton House Behavioral Health, among others.

Penn Medicine is an $11.1 billion enterprise powered by more than 49,000 talented faculty and staff.

Share This Page: