Representative images of kidney tissue from APOL1-G1 and APOL1-G2 mice, showing severe scarring of the kidney filter
Credit: Katalin Susztak, Perelman School of Medicine, University of Pennsylvania
PHILADELPHIA - African Americans have a heightened risk of developing chronic and end-stage kidney disease. This association has been attributed to two common genetic variants – named G1 and G2 -- in
APOL1, a gene that codes for a human-specific protein. However, direct evidence showing that these variants definitively cause kidney disease was lacking because
APOL1 is widely expressed in different cell types but the gene is present in only some primates and humans. The challenge has been to create an animal model to prove this. Now, a team led by researchers from the
Perelman School of Medicine at the University of Pennsylvania has engineered mice with these mutations that cause human-like kidney disease.
“The key missing piece has been whether these variants are true disease culprits,” said senior author Katalin Susztak, MD, PhD, an associate professor of Medicine and Genetics, of the study published online in Nature Medicine. “Our study established that these mutations are definitely disease causing.”
The G1 and G2 APOL1 gene variants, found almost exclusively in people of West African descent, have been shown to be associated with two-to-100-fold increased risk of kidney disease development, according to previous studies. Despite this highly significant risk, more than one third of African Americans carry the G1 and G2 variants. Biologists surmise that the reason these two mutations are so prevalent is that they emerged as a result of “positive selection” in people of African descent because the mutant proteins protect humans against the parasite that causes African sleeping sickness. Cells that express the G1 and G2 variants of the APOL1 protein are better able to kill these parasites.
To prove that expression of APOL1 with the G1 and G2 mutations causes kidney disease, the team made mice in which they could induce the expression of the non-mutated APOL1 gene as well as the G1 or G2 mutated APOL1 genes in different cell types. The team found that when the G1 and G2 variants are expressed in the filtering cells of the kidney the disease in the mouse model strongly resembled features of human kidney disease at the functional, structural, and molecular level. “These mutant proteins caused the kidney filter to become leaky and scarred, resulting in defective kidney function” Susztak said.
Kidney disease development was specific to the filtering cells of the kidney. The scientists found that G1 or G2 mutated APOL1 proteins interfere with the normal house-cleaning function of the cell, leading to an accumulation of jumbled proteins, inflammation, and eventually cell death. This trash removal system is especially important in kidney filtering cells, as these cells do not renew and losing them results in scarring of kidney tissue.
“Now that we know that the G1 and G2 mutated APOL1 proteins cause human-like kidney disease, we can start to look for ways to target them to reduce kidney disease risk among millions of people of African descent,” Susztak said. “The good news is that in mice the disease development was experimentally reversible when the G1 and G2 genes were turned off, and in a related finding, disease severity also correlated with the amount of expression of G1 and G2 APOL1 variant proteins in patient samples.”
Coauthors are Pazit Beckerman, Jing Bi-Karchin, Ae Seo Deok Park, Chengxiang Qiu, Patrick D. Dummer, Irfana Soomro, Carine M. Boustany-Kari, Steven S. Pullen, Jeffrey H. Miner, Chien-An A. Hu, Tibor Rohacs, Kazunori Inoue, Shuta Ishibe, Moin A. Saleem, Matthew B. Palmer, Ana Maria Cuervo, and Jeffrey B. Kopp.
This work was supported by the National Institutes of Health (DK105821, T32-DK007006).
Penn Medicine is one of the world’s leading academic medical centers, dedicated to the related missions of medical education, biomedical research, excellence in patient care, and community service. The organization consists of the University of Pennsylvania Health System and Penn’s Raymond and Ruth Perelman School of Medicine, founded in 1765 as the nation’s first medical school.
The Perelman School of Medicine is consistently among the nation's top recipients of funding from the National Institutes of Health, with $550 million awarded in the 2022 fiscal year. Home to a proud history of “firsts” in medicine, Penn Medicine teams have pioneered discoveries and innovations that have shaped modern medicine, including recent breakthroughs such as CAR T cell therapy for cancer and the mRNA technology used in COVID-19 vaccines.
The University of Pennsylvania Health System’s patient care facilities stretch from the Susquehanna River in Pennsylvania to the New Jersey shore. These include the Hospital of the University of Pennsylvania, Penn Presbyterian Medical Center, Chester County Hospital, Lancaster General Health, Penn Medicine Princeton Health, and Pennsylvania Hospital—the nation’s first hospital, founded in 1751. Additional facilities and enterprises include Good Shepherd Penn Partners, Penn Medicine at Home, Lancaster Behavioral Health Hospital, and Princeton House Behavioral Health, among others.
Penn Medicine is an $11.1 billion enterprise powered by more than 49,000 talented faculty and staff.