Announcement

PHILADELPHIA – Hao Wu, PhD, an assistant professor of Genetics in the Perelman School of Medicine at the University of Pennsylvania has received a New Innovator Award from the National Institutes of Health (NIH). These awards provide each recipient $1.5 million over five years to pursue high-risk, high-reward investigations that could have implications for human health. Wu’s grant is among 89 announced last week “to highly creative and exceptional scientists with bold approaches to major challenges in biomedical research,” according to the NIH announcement.

The New Innovator Award, established in 2007, supports unusually innovative research from early career investigators who are within 10 years of their final degree or clinical residency and have not yet received a research project grant or equivalent NIH grant. For 2017, NIH granted 55 New Innovator awards, as well as 12 Pioneer awards8 Transformative Research awards, and 11 Early Independence awards, all part of the NIH High-Risk, High-Reward Research program,

“I continually point to this program as an example of the creative and revolutionary research NIH supports,” said NIH Director Francis S. Collins, MD, PhD. “The quality of the investigators and the impact their research has on the biomedical field is extraordinary.”

Wu, also a core member of the Epigenetics Institute, came to Penn in 2016. His lab develops profiling and editing tools to investigate molecular interactions between environmental factors such as oxygen levels in tissues and the epigenome, a battery of chemical marks that control gene expression. Oxygen acts as a critical helper cofactor for many key epigenetic enzymes.

Recent studies suggest that cells can rapidly adapt to changing environmental inputs by modifying their epigenome and therefore which genes are expressed. Wu’s lab is interested in investigating the molecular underpinnings regulating this interaction and its relationship to developmental processes and human diseases.

Wu’s new grant will fund his study of how the epigenome of heart muscle cells respond and adapt to changing environmental oxygen levels. These heart cells can proliferate and therefore possess regenerative potential in the oxygen-poor environment of a developing embryo before birth but rapidly lose such potential in the oxygen-rich environment of newborn mice or humans that have taken their first breath of air. Better understanding of the molecular program that promotes proliferation of heart muscle cells in the embryos may inform therapeutic approaches to treat adult heart disease.

He proposes to develop single-cell profiling methods and “oxygen-sensing” epigenome editing enzymes to learn how to rewire the epigenome of mammalian heart muscle cells for the purpose of adult heart regeneration. “Armed with these new tools, we will have the ability to observe and actively manipulate the interaction between environmental inputs and the epigenome ‘on demand’, providing fundamentally new opportunities to study the environment-epigenome interaction involved in a broad array of biological and pathological processes,” Wu said.

Wu received his bachelor’s degree in Biological Sciences from Tsinghua University before moving to the University of California, Los Angeles, where he earned his PhD in Molecular Pharmacology. He worked in the laboratories of Yi Zhang and Kenneth Chien at Harvard University for his postdoctoral training where he developed and applied new methods for investigating gene regulatory roles of novel DNA modifications in pluripotent stem cells and during heart development. He was the recipient of a Jane Coffin Child Postdoctoral Fellowship and a Pathway to Independence Award from the NIH. 

Topic:

Penn Medicine is one of the world’s leading academic medical centers, dedicated to the related missions of medical education, biomedical research, excellence in patient care, and community service. The organization consists of the University of Pennsylvania Health System and Penn’s Raymond and Ruth Perelman School of Medicine, founded in 1765 as the nation’s first medical school.

The Perelman School of Medicine is consistently among the nation's top recipients of funding from the National Institutes of Health, with $550 million awarded in the 2022 fiscal year. Home to a proud history of “firsts” in medicine, Penn Medicine teams have pioneered discoveries and innovations that have shaped modern medicine, including recent breakthroughs such as CAR T cell therapy for cancer and the mRNA technology used in COVID-19 vaccines.

The University of Pennsylvania Health System’s patient care facilities stretch from the Susquehanna River in Pennsylvania to the New Jersey shore. These include the Hospital of the University of Pennsylvania, Penn Presbyterian Medical Center, Chester County Hospital, Lancaster General Health, Penn Medicine Princeton Health, and Pennsylvania Hospital—the nation’s first hospital, founded in 1751. Additional facilities and enterprises include Good Shepherd Penn Partners, Penn Medicine at Home, Lancaster Behavioral Health Hospital, and Princeton House Behavioral Health, among others.

Penn Medicine is an $11.1 billion enterprise powered by more than 49,000 talented faculty and staff.

Share This Page: