News Release
Algorithm

PHILADELPHIA – As tumor cells multiply, they often spawn tens of thousands of genetic mutations. Figuring out which ones are the most promising to target with immunotherapy is like finding a few needles in a haystack. Now a new model developed by researchers in the Abramson Cancer Center at the University of Pennsylvania hand-picks those needles so they can be leveraged in more effective, customized cancer vaccines. Cell Systems published the data on the model’s development today, and the algorithm is already available online as an open source technology to serve as a resource.

“There are mutations in tumors that can lead to powerful immune responses, but for every one mutation that generates a robust response, about 50 mutations don’t work at all, which means the signal-to-noise ratio is not great,” said the study’s lead author Lee P. Richman, an MD/PhD candidate in Cancer Biology in the Perelman School of Medicine at the University of Pennsylvania. “Our model works like a filter that highlights the signal and shows us which targets to focus on.”

Currently, sequencing a tumor and identifying possible immunotherapies is based on a measurement called tumor mutations burden (TMB), essentially a measure of the rate of mutations present in a given tumor. Tumors with a high rate of mutation are more likely to respond to immunotherapy targeting inhibitors like PD-1. The problem is that as cancer cells divide, they mutate at random, and since they divide exponentially, the potential mutations are almost infinite. This means that while a given immunotherapy can target some percentage of cancer cells, it may not be enough to be an effective treatment for any given patient.

The Penn team’s model looks instead at protein sequences from samples of individual patients and evaluates how much of it looks similar to healthy cells and how much looks different enough that the immune system might react to it. The more it is dissimilar, the better immunotherapy target it makes because it’s more likely to attract and activate therapies with less collateral damage to healthy cells. The model’s prediction is also personalized to each patient’s sample. The team analyzed samples of 318 patients from five different clinical trial data sets and not only confirmed the association between dissimilarity and promise as an immunotherapy target, but also found that dissimilarity correlated to increased overall survival after PD-1 therapy in patients with non-small cell lung cancer.

With so many different possibilities of mutations, we essentially boiled the question of which targets to use down to a math problem, then developed an algorithm to solve it,” said Andrew J. Rech, MD, PhD, a resident in Pathology and Laboratory Medicine and the study’s co-senior author along with Robert H. Vonderheide, MD, DPhil, director of the Abramson Cancer Center. “We also knew it was important to make this model available for other researchers to help inform vaccine development and clinical trials.”

The researchers say in addition to its use in trials, future work will also include applying the tool to more data sets to refine the algorithm.

This study was supported by the National Institutes of Health (R01 CA229803, P30 CA016520) and the Parker Institute for Cancer Immunotherapy.

Topic:

Penn Medicine is one of the world’s leading academic medical centers, dedicated to the related missions of medical education, biomedical research, excellence in patient care, and community service. The organization consists of the University of Pennsylvania Health System and Penn’s Raymond and Ruth Perelman School of Medicine, founded in 1765 as the nation’s first medical school.

The Perelman School of Medicine is consistently among the nation's top recipients of funding from the National Institutes of Health, with $550 million awarded in the 2022 fiscal year. Home to a proud history of “firsts” in medicine, Penn Medicine teams have pioneered discoveries and innovations that have shaped modern medicine, including recent breakthroughs such as CAR T cell therapy for cancer and the mRNA technology used in COVID-19 vaccines.

The University of Pennsylvania Health System’s patient care facilities stretch from the Susquehanna River in Pennsylvania to the New Jersey shore. These include the Hospital of the University of Pennsylvania, Penn Presbyterian Medical Center, Chester County Hospital, Lancaster General Health, Penn Medicine Princeton Health, and Pennsylvania Hospital—the nation’s first hospital, founded in 1751. Additional facilities and enterprises include Good Shepherd Penn Partners, Penn Medicine at Home, Lancaster Behavioral Health Hospital, and Princeton House Behavioral Health, among others.

Penn Medicine is an $11.1 billion enterprise powered by more than 49,000 talented faculty and staff.

Share This Page: